

SENIOR SECONDARY

DATE:

GENERAL INSTRUCTIONS:

- 1.Do not open the booklet until you are told to do so.
- 2.You are given 90 minutes to attempt all 25 questions.
- 3.Ensure to enter the necessary information asked in the Answer Sheet such as your name, participant number, country, and year level.
- 4. Record your answers neatly on the Answer Sheet provided.
- 5. Marks are awarded for correct answers only. There is no penalty for incorrect answers. 6. Calculators are not allowed.
- 7.All figures are not drawn to scale. They are intended only as aids.
- 8.Start answering when the proctor gives the signal.

Part 1 (Questions 1 to 10):

There are 10 multiple-choice questions. Choose the best answer from the four possible choices

Each question carries 2 marks

Part 2 (Questions 11 to 25):

There are 20 open-ended questions, each requiring a single answer. Write your answer on the box provided in the Answer Sheet

Questions 11 to 20, each carries 3 marks

Questions 21 to 25, each carries 5 marks

DO NOT REMOVE this exam paper from the exam venue

	Part 1: 1 st to 10 th Multiple Choice Questions				
1.	Which of the fol A. $2^{\log_5 6}$	lowing is the larg B. $2^{\log_6 5}$	est? C. $3^{\log_6 5}$	D. $3^{\log_5 6}$	E. 3
2.	Let A be the se area of A is equal A . 7	t of points in the al to B. 28	xy-plane satisfy C. 42	ing the equation D. 63	x + y = 7. The E. 98
3.	What is the sma A. 21	allest altitude in t B. $\frac{21 \cdot 20}{29}$	he triangle with s C. $\frac{20 \cdot 29}{23}$	ides 20, 21, and 2 D. $\frac{20 \cdot 29}{21}$	9. E. 20
4.	If $a + b + c = a^2$ A. -2	$b^{2} + b^{2} + c^{2} = a^{3} + b^{2} + b^{2} + b^{2} + c^{2} = a^{3} + b^{2} + b^{2} + c^{2} + c^{2$	$b^3 + c^3 = \frac{3}{2}$, then C. 10	abc equals D. $-\frac{1}{2}$	E. 20
5.	Find the exact v A. 224	value of $\sqrt{14^3 + 15}$ B. 104	$ \frac{5^3 + 16^3 + \ldots + 2^4}{C, 312} $	$\frac{4^3 + 25^3}{D. 336}$	E. 676
6.	6. How many triples (a, b, c) are solutions of the system of two equations				
	$a+b=2, \qquad ab-c^2=1?$				
	A. 0	B. 1	C. 2	D. 3	E. infinitely many
7.	Suppose $f(x)$ is a function that satisfies the equation $5f\left(\frac{1}{x}\right) + f(x) - x = 3$ for all				
	non-zero real nu 37	mbers x . Determ	ine the value of f	(4).	15
	A. $\overline{96}$	B. $\frac{1}{53}$	C. 21	D. 12	E. $\overline{4}$
8.	Let a, b, c, d be positive integers such that $\log_a b = \frac{3}{2}$ and $\log_c d = \frac{5}{4}$. If it is known that $a - c = 9$ determine the value of $b - d$.				
	A. 47	B. 87	C. 93	D. 105	E. 64
9.	Find the number that satisfies the	r of ordered pairs e equation $y + 490$	(x, y), where x is $07 = (x - 90)^2$.	an integer and y	is a perfect square
	A. 0	Β. 2 . π	C. 4 3π 5π	D. 6 . 7π	Е. 8
10.	Find the exact v A. 1	value of $\sin^4 \frac{\pi}{8} + s$ B. 1.5	$ \frac{\sin^4 \frac{\sin^4}{8} + \sin^4 \frac{\sin^4}{8}}{\text{C. 2}} - \frac{1}{2} $	$+\sin^4\frac{1.7}{8}$. D. 2.5	E. 3.5

Part 2: 11th to 30th Open-ended Questions

Question 17

- 11. Kier has a salary of \$202,020,020 this year, Next year, his salary will increase by 300%. The year after, his salary will decrease by 75%. Compute his salary in two years.
- 12. Let $f(x) = x^4$ and $g(x) = \frac{1}{x^4}$. Find the value of f''(2)g''(2).
- 13. Compute the smallest root of $x^4 x^3 5x^2 + 2x + 6$.
- 14. Find all real x that satisfy the equation $\sqrt[3]{20x + \sqrt[3]{20x + 20}} = 20$.

15. Compute
$$\lim_{x\to 3} \frac{x^2 + 4x - 21}{x^2 - 4x + 3}$$

- 16. In $\triangle ABC$ it is known that AB = 13, BC = 14 and AC = 15. Let D and E be the feet if the altitudes from A and B, respectively. Find the circumference of the circumcircle of $\triangle CDE$.
- 17. A 6 cm \times 12 cm \times 22 cm rectangular block of wood is painted blue and then cut into small cubes, each of which also a surface area of 6 cm². Find the number of small cubes that have blue paint on exactly two faces.
- 18. Given a regular hexagon ABCDEF, compute the probability that a randomly chosen point inside the hexagon is inside triangle PQR, where P is a midpoint of AB, Q is the midpoint of CD, and R is the midpoint of EF.
- 19. A regular dodecagon is inscribed in a circle of radius 10. Find its area.
- 20. Find the minimum value of xy + xz + yz given that x, y, z are real numbers that satisfies the equation $x^2 + y^2 + z^2 = 1$.
- 21. How many ways are there to put 7 identical oranges into 4 identical packages so that each package has at least one apple?

Question 25

22. Determine the exact value of

$$\frac{2}{\frac{1}{\sqrt{2} + \sqrt[4]{8} + 2} + \frac{1}{\sqrt{2} + \sqrt[4]{8} - 2}}$$

- 23. Find the integer which is closests to $\frac{(1+\sqrt{3})^4}{4}$.
- 24. Find the 2021th-smallest x with x > 1, that satisfies the following relation:

$$\sin(\ln x) + 2\cos(3\ln x)\sin(2\ln x) = 0.$$

25. A circle is inscribed in a right triangle with sides a, b, and c, where c is the hypotenuse, as shown in the diagram. Find the radius of the circle using the sides of the triangle.